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Abstract. In this brief paper the probability density of a random real, complex and quaternion
determinant is rederived using the singular values. The behaviour of suitably rescaled random
determinants is studied in the limit of infinite order of the matrices.

1. Introduction and results

We consider n × n matrices whose elements are either real, or complex or quaternions (in
what follows, the four components of the quaternions will always be real); the real parameters
entering these elements are independent Gaussian random variables with mean zero and the
same variance. The number of real parameters needed to characterize an n× n matrix is thus
βn2, where β is 1, 2 or 4, according to whether the matrix elements are real, complex or
quaternions. We will derive the probability density of their determinant.

The determinant of random real matrices is an old subject [1], that of random complex
matrices and of random Hermitian complex matrices was studied some time ago [2], that
of random quaternion matrices presents some peculiar features due to the non-commutative
multiplication, as we will see below, while the case of real symmetric matrices has been settled
recently for odd n [3].

The method we will use here is to start with the joint probability density of the singular
values, rather than that of the eigenvalues. As the absolute value of the determinant is the
product of all the singular values, we can find its probability density by calculating its Mellin
transform. This gives new proofs of the known results for random real and complex matrices
and of a partial result for quaternion matrices.

For quaternions, multiplication being not commutative, it is not possible to define a
determinant having the usual three properties [4]: namely, (i) detA = 0 if and only if Ax = 0
has a non-zero solution x �= 0, (ii) det(AB) = detA · detB, (iii) detA is multi-linear in the
rows of A. So the definition of a determinant varies according to which of the property or
properties one wants to keep. We will adopt the following definition due to Dieudonné or
Artin [5].

Any matrix A is either singular (i.e. Ax = yA = 0 have non-zero solutions) or has an
inverse (i.e. AB = BA = I ) [4]. If A is singular, define detA = 0. If A has an inverse,
define detA by recurrence on n as follows. If n = 1, define detA = |a11|, where |x| means
the norm of (the quaternion) x. If n > 1, then let Aij be the (n− 1)× (n− 1) matrix obtained
by removing the ith row and the j th column of A. The matrix elements of B, the inverse of A,
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are written as bij . Not all bij are zero. One shows [5] that, whenever bij = 0, detAji = 0 and
whenever bij �= 0, detAji �= 0 and |b−1

ij detAji | is independent of i or j . One then defines

detA = |b−1
ij detAji |. Thus, for a quaternion matrix A, detA is a non-negative real number.

(For real or complex A this definition also gives a non-negative real number, the absolute value
of the usual ordinary determinant.) Note that this determinant is not linear in the rows of A,
but has the other two properties [5]. Also that a quaternion matrix A may be singular while its
transpose has an inverse [4].

The eigenvalues and eigenvectors of a matrix A are defined as the solutions of Aϕ = ϕx,
where ϕ is an n × 1 matrix and x is a number. For a real or complex A one can eliminate ϕ
to get det(A − xI) = 0, where I is the unit matrix. For quaternion A, if x is an eigenvalue
with the eigenvector ϕ and µ any constant quaternion, then µ−1xµ is an eigenvalue with the
eigenvector ϕµ. Thus x and µ−1xµ are not essentially distinct as eigenvalues. It is not evident
that an n×n quaternion matrix should have n (quaternion) eigenvalues, but it has [6]. One can
actually put them in correspondance with complex numbers (see, e.g., [6, chap. 15.2]). Here
we will only note that the norm of the product of eigenvalues gives the determinant defined
above.

If all the eigenvalues of A are essentially distinct, then one can diagonalize A by a non-
singular matrix. To make things clearer, we give an example:[

1 e2

e1 e3

] [
1 1
e2 e1

]
=
[

1 1
e2 e1

] [
0 0
0 1 − e3

]
(1.1)[

1 e1

e2 e3

] [
1 1
a b

]
=
[

1 1
a b

] [
x1 0
0 x2

]
(1.2)

with

a = 1
2 (1 −

√
3)(e1 − e2) b = 1

2 (1 +
√

3)(e1 − e2) (1.3)

x1 = 1
2 (1 +

√
3) − 1

2 (1 −
√

3)e3 x2 = 1
2 (1 −

√
3) − 1

2 (1 +
√

3)e3 (1.4)

showing that the eigenvalues of

[
1 e2

e1 e3

]
are 0 and 1 − e3, while those of its transpose[

1 e1

e2 e3

]
are x1 and x2. Their determinants are, respectively, 0 and 2.

If all the eigenvalues xi are real and positive (respectively, real and non-negative), one says
that A is positive definite (respectively, positive semi-definite). Denote by A† the transpose,
Hermitian conjugate or the dual of A according to whether A is real, complex or quaternion.
For any matrix A, the product AA† (or A†A) is positive semi-definite, its eigenvalues are real
and non-negative. The positive square roots of the eigenvalues of AA† (or of A†A; they are the
same) are known as the singular values (see, e.g., [4, chaps. 4.8; 8.6.3]) of A. The eigenvalues
and singular values of A have, in general, nothing in common, except that

n∏
i=1

λ2
i = det(AA†) = detA · detA† = | detA|2 =

n∏
i=1

|xi |2 (1.5)

where λi are the singular values and xi are the eigenvalues of A.
In section 2 we start with the joint probability density of the singular values and calculate

the Mellin transform of the probability densityp(|y|) of the (absolute value) of the determinant
y of a random matrix A. From symmetry, when A is real, y is real and p(y) is even in y; when
A is complex, y is complex and p(y) depends only on |y|. When A is quaternion, y is, by
definition, real and non-negative. One can therefore recover p(y) from p(|y|) when A is real
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or complex. Our results, confirming those in the known cases, are as follows:

p1(y) =
n∏

j=1

[
�

(
j

2

)]−1

G
n,0
0,n

(
y2

∣∣∣∣0, 1

2
,

2

2
,

3

2
, . . . ,

n − 1

2

)
y real (1.6)

p2(y) = 1

π

n∏
j=1

[�(j)]−1G
n,0
0,n(|y|2|0, 1, 2, . . . , n − 1) y complex (1.7)

p4(y) = 2
n∏

j=1

[�(2j)]−1G
n,0
0,n(y

2| 3
2 ,

7
2 ,

11
2 , . . . , 2n − 1

2 ) y real non-negative. (1.8)

Here G
n,0
0,n is a Meijer G function. In the above results the Gaussian probability distribution

P(A) for the matrix A was taken P(A) ∝ e−a tr A†A, with a = 1. Next we show that the
probability density of the random variable y = [detA†A]1/n converges to δ(y − 1/e) in the
large n limit, with P(A) ∝ e−a tr A†A and a = β n/2. In section 3 we study the large n limit for
a non-Gaussian random complex matrix and show that the random variable y = [detA†A]1/n

converges in the large n limit to a constant, whose value, depending on the parameters in the
non-Gaussian probability distribution, is different in the two phases of the model. Finally, for
a Hermitian complex random matrix H with probability density P(H) ∝ e−n tr H 2

, we show
that, in the large n limit, | detH |1/n tends to the constant 1/

√
2e.

Some of these results are probably known to some experts, since analogous results appear
in the literature [7].

2. Gaussian matrices

The joint probability density of the singular values can conveniently be derived in two steps
from the two observations [8]‡ and [9]:

(i) Any matrix A can almost uniquely be written as U�V , where � is a diagonal matrix
with real non-negative diagonal elements, while U and V are real orthogonal, complex
unitary or quaternion symplectic matrices according to whether A is real, complex or
quaternion; ‘almost uniquely’ referring to the fact that either U or V is undetermined up
to multiplication by a diagonal matrix.

(ii) Any positive semi-definite matrix H = AA† can be written uniquely as H = T T †, where
T is a triangular matrix with real non-negative diagonal elements.

As a result the Gaussian joint probability density exp(−a tr AA†) for the matrix elements
of A gets transformed to

F(�) ≡ F(λ1, . . . , λn) = const exp

(
− a

n∑
j=1

λ2
j

)
|"(λ2)|β

n∏
j=1

λ
β−1
j (2.1)

where λ1, . . . , λn are the singular values of A, " is the product of differences:

"(λ2) =
∏

1�j<k�n

(λ2
k − λ2

j ) (2.2)

and β = 1, 2 or 4 according to whether A is real, complex or quaternion.

‡ In the last formula in [8] there is a misprint; the eigenvalues of H being λ2
j , and not λj , the last formula should be

Ż = 2−n2
D2(λ2

1, . . . , λ
2
n) dλ2

1, . . . , dλ2
n · U̇ [U̇ ] = 2−n2+nD2(λ2

1, . . . , λ
2
n)

n∏
j=1

λj dλj · U̇ [U̇ ].
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The Mellin transform of the product of the λs is

Mn(s) = const
∫ ∞

0
ηs−1δ(η − λ1, . . . , λn) F (�) dλ1, . . . , dλn dη

= const
∫ ∞

0
exp

(
− a

n∑
j=1

λ2
j

)
|"(λ2)|β

n∏
j=1

λ
β+s−2
j dλj

= const
∫ ∞

0
exp

(
− a

n∑
j=1

tj

)
|"(t)|β

n∏
j=1

t
(β+s−3)/2
j dtj

= a−n(s−1)/2
n∏

j=1

[
�( s−1

2 + jβ

2 )

�(
jβ

2 )

]
. (2.3)

In the last line we have used a result derived from Selberg’s integral (see, e.g., [6, chap. 17,
equation (17.6.5)]). The constant, independent of s, is fixed from the requirement that
Mn(1) = 1.

The inverse Mellin transform of the expression (2.3) is a Meijer G function [10]:

pβ(|y|) = 2 an/2
n∏

j=1

[
�

(
jβ

2

)]−1

G
n,0
0,n

(
an|y|2

∣∣∣∣β − 1

2
,

2β − 1

2
, . . . ,

nβ − 1

2

)
. (2.4)

When β = 1, the matrix A is real, its determinant y is real, from symmetry the probability
density p1(y) is an even function of y and we have

p1(y) = 1
2p1(|y|) (2.5)

giving equation (1.6) with a = 1. When β = 2, A is complex, y is complex, from symmetry
p2(y) depends only on the absolute value |y| of y, and one has, for a = 1,

p2(y) = 1

2π |y|p2(|y|)

= 1

π

n∏
j=1

[�((j)]−1 1

|y|G
n,0
0,n

(
|y|2

∣∣∣∣12 , 3

2
, . . . , n − 1

2

)

= 1

π

n∏
j=1

[�(j)]−1G
n,0
0,n(|y|2|0, 1, . . . , n − 1) (2.6)

which is equation (1.7). When β = 4, A is quaternion, y is, by definition, real positive, and
p4(y) = p4(|y|), giving equation (1.8).

In [2, appendix A.5], we somewhat conventionally mapped the (quaternion) eigenvalues
onto the essentially equal eigenvalues having the scalar part and only one other component at
most, accounting for a factor y2 in the probability density. Moreover, in equation (A.43) there
has been a misprint (�((s + 2j + 1)/2) there should be �((s/2)+ 2j + 1)). Thus equation (1.8)
tallies with [2, equation (A.43)].

We now evaluate the large n behaviour of the moments 〈yk〉 of the random variable
y = [detA†A]1/n which shows that it converges to a constant in the n → ∞ limit. Next the
same result is obtained by the saddle point method. In the study of large n, the proper choice
of the parameter a for the Gaussian ensembles is a = β n/2. Then equation (2.3) implies

〈(detA†A)k〉 =
(
β n

2

)−nk n∏
j=1

[
�(k + jβ

2 )

�(
jβ

2 )

]
(2.7)
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that is,

log〈(detA†A)k〉 = −nk log
β n

2
+

n∑
j=1

log
�(k + jβ

2 )

�(
jβ

2 )

≈ −nk log
β n

2
+ n

∫ 1

0
dx log

�(k + β

2 + nxβ

2 )

�(
β

2 + nxβ

2 )
+ O(log n)

≈ −nk + O(log n) (2.8)

where the Euler–Maclaurin formula has been used to estimate the large n asymptotics. When
x is near 0, the integrand is a constant and its contribution is negligible. When x is not small,
one can ignore other terms compared to nxβ/2.

Replacing k → k/n in equations (2.7) and (2.8), one gets

lim
n→∞ log〈(detA†A)k/n〉 = −k. (2.9)

From the knowledge of all the moments (2.9), we conclude that the random variable
y = (detA†A)1/n converges in the large n limit to the constant 1/e.

It is convenient to evaluate the above large n limit also by a saddle point approximation
because this is easy to generalize to different probability distributions. Let us recall the
asymptotic density of squared singular values (see [11], equation (10)) after setting L = 1,
m2 = 1, g = 0, and hence A = 0, B = 4):

ρ(t) = lim
n→∞

1

n

∑
j

〈δ(t − tj )〉 = 1

2π

√
4 − t

t
0 < t � 4. (2.10)

Then it is easy to evaluate

lim
n→∞

1

n
〈log(detA†A)k〉 = lim

n→∞
1

n

〈
k

n∑
j=1

log tj

〉

= k

∫ 4

0
log t ρ(t) dt = −k (2.11)

confirming equation (2.9).

3. Large n for non-Gaussian complex matrices

Let us now consider an example of non-Gaussian probability distribution such that, in the large
n limit, two different spectral densities for the singular values exist. For simplicity, we consider
the ensemble of n × n complex matrices A with the non-Gaussian probability distribution

P(A) ∝ e−n(a tr A†A+2b tr A†AA†A) b > 0 a real. (3.1)

The analogous ensemble of real matrices would need only trivial changes.
Again the evaluation of all the moments of y = [detA†A]1/n may be performed in terms

of tj , the squared singular values of the matrix A:

〈(detA†A)k〉 =
∫ · · · ∫∞

0 "2(t)
∏n

j=1 t
k
j e−n(atj+2bt2

j ) dtj∫ · · · ∫∞
0 "2(t)

∏n
j=1 e−n(atj+2bt2

j ) dtj
. (3.2)

Since
∏n

j=1(tj )
k/n = exp( k

n

∑n
1 log tj ), the large n limit for all the moments 〈yk〉 is easily

evaluated by the saddle point approximation:

lim
n→∞〈yk〉 = lim

n→∞

〈
exp

(
k

n

n∑
1

log tj

)〉
= exp

(
k

∫
dt ρ(t) log t

)
(3.3)
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where ρ(t) is the solution of the saddle point equation

a

2
+ 2bt = −

∫
ρ(y)

t − y
dy. (3.4)

The solution of equation (3.4) has two different forms, ρ1(t) and ρ2(t) (see [11], equation (10))
after setting L = 1, m2 = a, g = b), depending on the values of the real number a/

√
b being

larger or smaller than the critical value a/
√
b = −4. At the critical value ρ1(t) = ρ2(t).

ρ1(t) = 1

π

√
C − t

t

[
2bt +

2a +
√
a2 + 48b

6

]
0 < t � C

C =
√
a2 + 48b − a

6b
a/

√
b � −4.

(3.5)

The definite integrals related to equation (3.3) for the spectral function ρ1(t) are known in
closed form and∫ C

0
ρ1(t) log t dt = log

C

4
− 1

2
− aC

8
. (3.6)

Therefore in the ‘perturbative phase’, that is for a/
√
b � −4, the random variable y converges

in the large n limit to a constant

lim
n→∞[detA†A]1/n = C

4
e− 1

2 − aC
8 . (3.7)

For a/
√
b � −4 we have

ρ2(t) = 2b

π

√
(B − t)(t − A) A � t � B

A + B = − a

2b
B − A = 2√

b
a/

√
b � −4.

(3.8)

The definite integral related to equation (3.3) for the spectral function ρ2(t) may still be
evaluated:

I (a, b) =
∫ B

A

ρ2(t) log t dt = 2b

π

∫ B

A

√
(B − t)(t − A) log t dt

= b

8
(
√
B −

√
A)4 +

b

2
(B − A)2 log

(√
B +

√
A

2

)
. (3.9)

One may still conclude that also in the ‘non-perturbative phase’, that is for a/
√
b � −4, the

random variable y converges in the large n limit to a constant

lim
n→∞[detA†A]1/n = eI(a,b) a/

√
b � −4. (3.10)

We remark that other functions of the determinant, such as w = 1
nn

2 [detA†A]n, may not
have a finite limiting probability distribution in the large n limit, though their large n behaviour
may still be evaluated.

Hermitian matrices. The large n limit of the absolute value of the determinant of Gaussian
Hermitian matrices may be evaluated from the exact finite n moments given in [2]. Let
us consider an ensemble of n × n Hermitian matrices H with probability distribution
P(H) ∝ e−n tr H 2

and the random variable y:

y = | detH |1/n. (3.11)
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Let xj , j = 1, . . . , n be the eigenvalues of the matrix H , then

〈yk〉 =
∫ · · · ∫∞

−∞ "2(x)
∏n

j=1 |xj |k/n e−nx2
j dxj∫ · · · ∫∞

−∞ "2(x)
∏n

j=1 e−nx2
j dxj

. (3.12)

These moments are known from [2]:

〈yk〉 = n−k/2
n∏

j=1

�( 1
2 + k

2n + b+
j )

�( 1
2 + b+

j )
b+
j =

[
j

2

]
(3.13)

log〈yk〉 ≈ −k

2
log(2 e) + O

(
log n

n

)
. (3.14)

Thus in the large n limit | detH |1/n tends to the constant 1/
√

2e.
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